Introduction to Human Factors
Human Anatomy & Biomechanics

What is anthropometry?
- The comparative study of sizes and proportions of the human body
- Traditionally, used to design equipment, tools etc. for use when user is constrained in posture (e.g. chairs/seats, workstations)
- More recently, being applied to design of computers that are worn (wearables) or carried (portables)

Stages involved in using anthropometric data
- 1. What are the important/relevant body dimensions?
- 2. What is the relevant population?
- 3. What principle should be followed?
 - Design for extremes
 - Design for adjustable range
 - Design for average

Stage 3: Design for extremes
- Either design for maximum value of design feature, e.g. height of doors, size of buttons
- Or design for minimum value of design feature, e.g. distance from control
- Traditionally, designers have used limits of 5th % female —> 95th % male
- This strategy can ‘design out’ large sections of a user population
- Recently, push for Inclusive Design - increase limits in design

Stage 3: Design for adjustable ranges
- Provide range of adjustments when there are health and safety issues involved (e.g. driving a car, working in office)
- As before, danger of designing out sections of user population, particularly if design is multi-dimensional
- Inclusive design argues that full range of adjustments are needed
Stage 3: Design for averages

- For population of interest, use 50th percentile figures for relevant dimensions
- There is no such thing as the ‘average person’, due to poor correlations between different body dimensions
- This strategy is only acceptable when primarily concerned with one dimension, and….
 …health and safety is not a significant issue (e.g. lecture room chairs)

Stages involved in using anthropometric data(2)

- 4. What percentage of population can be accommodated?
- 5. Locate anthropometrical data of interest (either in tables, or using computer-aided design packages)…….
- 6. Account for ‘real-world’ use (clothing, postures, movements, etc.)
- 7. Build mock-ups and test

Is Gary average?

Come to the lecture to find out!!!

Is Tim big?

Come to the lecture to find out!!!

Computer-aided design

An example of ‘poor fit’
Biomechanics concerns the physical movements of the human body. Forces can be calculated using the basic laws of mechanics. Human-machine system factors can lead to injury of musculoskeletal system, primarily:
- Lower back
- Upper limb

Back pain

- About 60% of adults experience back pain at some point in their working lives
- Lower back is vulnerable to injury through:
 - Manual handling (lifting, moving, etc.)
 - Long periods spent in constrained posture (particularly sitting)

Back pain - Manual handling

- Various factors increase risk of injury:
 - Weight of object/s to handle
 - Horizontal/vertical distance away of object/s
 - Distance to move object/s
 - Need for torso twisting
 - Frequency of handling
- Manual handling regulations aim to reduce workplace risk

Back pain - Sitting

- Sitting posture places greater pressure on inter-vertebral discs of spine than does standing
- Slumped (arched back) and unsupported postures lead to greatest problems
- Reduce risk by good chair and job/task design

Work-related upper limb disorders (WRULD)

- Effects fingers, hands and wrists, lower arms, elbow and shoulders
- In relation to the use of computers, the most common problems relate to the hands & wrists:
 - Compression of nerves within wrist (Carpal Tunnel Syndrome)
 - Inflammation of tendons (Tendonitis)
 - Inflammation of sheaths that surround tendons (Tenosynovitis)

WRULD: Physical factors

- Repetition - same movement and body part
- Posture - away from neutral positions
- Static exertion - maintaining position
- Contact stress - resting body part against hard/sharp surface
- Force - excessive muscular exertions
WRULD: Examples of design implications

- Consider alternative input devices (split keyboards, speech recognition, pointing devices, etc.)
- Careful design of the workstation (placement of computer, chairs, desk, etc.)
- Change aspects of a person’s job/tasks (work breaks, mental pressures, autonomy, etc.)

Summary

- Introduced important design-related issues concerning the physical characteristics of people:
 - Anthropometry
 - Biomechanics
- Today’s reading:
 - Wickens - Chapters 10 and 11
 - Sanders and McCormick - Chapter 13
- Next lecture: Displays and controls