Section (1): Fill in the circle corresponding to the appropriate answer (20 marks)

(20 marks)	
 By this model we can make a direct link between data and some graphic or image output. Interactive demonstration Conceptual Model Mathematical Model Visualization model 	 Obviously related Totally differ. Fully match. No difference between them. 7. Numerical solutions arethan analytic solutions: More complicated.
 2. The qualitative models that help highlight important connections in real world systems and processes. O Interactive demonstrations O Conceptual Models O Mathematical Models O Visualization models 	 More difficult. More intuitive. Extra tricky. activate the models to allow us to see and understand the world in its dynamic form. Abstraction
 3. Visualizations for multidimensional data can: O View data from different orientations. O Create 2D and contour plots. O Create and view animations of data at the same rates. O Create 3D creatures. 	 Simulations Categories Non of above The physical models of systems that can be easily observed and manipulated are Interactive demonstrations
 4. A visualization model: Gives indirect link between data and some graphic. Help highlights important connections in real world systems Link in series with some other type of model. Shows important connections in virtual systems 	 Conceptual Models Mathematical Models Visualization models 10. Examples of conceptual models are: Red sun-sets and blue skies. Significant misleading. Differences in shoulder joint structure. Major abstraction.
 5. The intensity of scattered light from the atmosphere has relationship with wavelength. O Direct. O Constant O Even. 	 11. Examples of Visualization models include the following except: O Animations. O Image manipulation. O Stella II. 12. Interactive demonstrations can be used in classes of

O Indirect.

6. Mathematical and Statistical Models are:

o small size

O large size

all sizes13. Interactive demonstrations strengthen students' abilities to	a unique perception of the designA global perception of the designA detailed perception
observestimulate questionsstimulate discussionsall of the above	 A systematic insight Interactive Demonstrations have proven to be very useful in all the following except
14. Interactive Demonstrations are that replicates part of a system of interest. • physical or conceptual models	 addressing student's misconceptions Providing stimulating hands-on inquiry into simple parts of complex systems.
Physical modelConceptual modeIntangible mode	Provide solution to the equations21. The major fields of modeling application are all the following except
 15are used as a first step in the development of more complex models. Conceptual Models Interactive Demonstrations 	Behavioral modelingEnvironmental modelingMulti-resolution modelingConceptual modeling
 Direct expression Visualizations 16. Interactive Demonstrations are physical 	22. The modern design area is characterized as much bycommunication and information
models that Part of a system of interest. • replicates	exchangemovement and engagementAttrition
DisplaysProtest againstrely on	23. Activities on the design situation areVery poorExtremely rich
17. Object modeling is be divided into O physical and behavioral. O mental and conceptual	varied in many casesVery rare 24. Behavioral Modeling includes
 visual and behavioral Cultural and ethical Object interactions, which are often 	EngagementCommunicationPlanningAttrition
viewed as, characterize the physical models. O physics based	25. Behavioral Modeling includes all the following except
Mental basedscientific basedVisual based	LearningReactionObject interactionPerception
19. One of the first real needs for representing the human in the model was to create for each group, unit, or individual.	 26. Models can be one of two categories: Physical and nonphysical. Physiological and no physiological. Promotional and no promotional.

 Psychological and nonPsychological. 	O Large.
27. Physical model, a physical	O Small.
of an object.	34. Model, an identifier of a product
Interpretation.	given by its manufacturer (also called
O Version.	model number).
O Description.	O Building.
• Representation.	O Solid.
28. Scale model,of an object.	Organism.
• A replica.	O Product.
O Prototype.	35. Model a person who poses to be
O Both of them.	depicted in painting.
• none of them.	O Art.
29. 3D modeling, a 3D polygonal	O Fetish.
representation of an object, usually	O Person.
displayed with a	O Product.
Machine.	36. Model a person employed to display
O Design.	his or her looks or something such as a
O Computer.	commercial product.
O System.	O Art.
30. Physical model includes all the following	O Fetish.
except	O Person.
O Model aircraft.	O Product.
O Car model.	37model, a model who wears the
Model organism.	clothing and/or devices of sexual things.
O Conceptual model.	O Art.
31. Model a hobby centered around	O Fetish.
construction of material replicas.	O Person.
O Building.	O Product.
O Solid.	38model, a person who interacts
Organism.	with consumers to draw attention to and
O Product.	often inform them about a product.
32. Solid modeling, study of	O Conceptual.
representations of the solid parts	O Person.
of an object, also called in vitro models.	O Promotional.
O Unclear.	39model, a person who serves as
O Equivocal.	a behavioral or moral example to others.
O Indefinite.	O Role.
O Unambiguous.	O Person.
33. Model organism, a Organism	O Pseudo.
used as model in biology.	O Promotional.
o simple.	40. Conceptual model, amodel.
O Complex.	Nonphysical, Abstract.

O Physical, Abstract.	O Economic.
O Physical Applied.	O Macroeconomic.
O Nonphysical, Applied.	47. Mental model, a person's cognitive of
11model, an abstract model that	an idea or thought process.
uses mathematical language.	O Interpretation.
O Mathematical.	O Version.
O Structure.	O Description.
O Applied.	Representation
O Physical.	48. Modeling, learning by imitating or
12, in model theory often called	observing a person's behavior.
just a model or semantic model.	O Psychology.
O Mathematical.	O Physiology.
O Structure.	Pathology.
O Applied.	O Physically.
O Physical.	49. Modelcontroller, an architectural
13, an abstract model that uses	pattern in software engineering.
cause and effect logic.	O Vision.
O Business model.	Observation.
• Causal model.	Outlook.
O Computer model.	O View.
O Conceptual model.	50 development model of a
14. Graphical model, amodel for	biological process, used in biological or
which a graph denotes the conditional	medical research.
independence structure between random	Pre- clinical.
variables.	O Post-clinical.
O Mental.	O Clinical-pre.
O Probabilistic.	O Clinical- post.
O Toy.	51 Model, the theory in particle physics
O Standard.	which describes certain fundamental
15 model, a neural process that	forces and particles.
simulates the response of the motor	O Statistical.
system in order to estimate the outcome	O System.
of a motor command.	Mechanistic.
O Mental.	O Standard.
O Internal.	52. Physical models allow, from
O Physical.	examining the model, of information
O Standard.	about the thing the model represents.
16 Model, an economic model	O Visualization.
representing a national or regional	• Revelation.
economy.	O Hallucination.
O Microeconomic.	• Apparition.
O Macroscopic.	53. Uses of an architectural model include

visualization of internal relationships	generating a model asof some
within the structure or external	phenomenon.
relationships of the structure to	Mathematical representation
the	Statistical representation
O Setting.	 Mathematical resolution
• Atmosphere.	conceptual representation
O Situation.	60. The most important step in creating a
Environment.	model is
54. Advantages of wireframe 3D modeling	O Defining a problem.
over exclusively 2D methods	O Solving a problem.
include	• Forming a problem.
	• Causing a problem.
Flexibility.Complex rendering.	61is any technique for creating
Inaccurate photorealism.	images, diagrams, or animations to
None of the above.	communicate a message.
55 Activates the models to allow us	Visualization
to see and understand the world in its	O Simulation
	O Adaptation
dynamic form.	O All of the above
AbstractionSimulations	62. The first step in rendering requires the
	user to
CategoriesNon of above	
56. Generating a model asof some	 provides the computer with detailed information about the source and angle
phenomenon.	of the lighting
•	• fill the surfaces of the geometric shapes
Mathematical representationStatistical representation	with colors, textures, and patterns
Mathematical resolution	provide the computer with a detailed
• conceptual representation	description of an object
57. Simulation activate the models to allow us	All of the above
to see and understand the world in it's	63. The main advantages of hardware
form.	rendering are the following except:
	O draws up to 60 images per second
dynamicStatic	• make immediate changes to the image
O steady	cheap
O Non of above	O Non of the above
58play in the development of the	64. People receive information, process this
model.	information, and respond
O simulation	O Interactive demonstrations
O validation	Conceptual Models
• assumptions	Mathematical Models
• rationale	O Visualization models
59. Modeling refers to the process of	65. The intensity of scattered light is

Inversely proportional to the 4th power of wavelength.Directly proportional to the 4th power of	engineeringarchitecturenone of the above
wavelength	
 Inversely proportional to the 2nd power of wavelength. 	72. The simulator is normally to operate than Life representation
 Directly proportional to the 2nd power of wavelength 	more cheapermore expensivemore difficult
66. Statistical Models include	more difficultNone of the above
Extrapolation or interpolation of data based on some best-fit.Error estimates of observations.	73is a computer program, that attempts to simulate an abstract model of a particular system.
Spectral analysis of data or model generated output.All of the above.	Computer simulationSoftware Engineering
67. Numerical solutions have several advantages over analytical solutions.	All of the aboveNone of the above
 The equations are much more intuitive. The equations are less intuitive. Less realistic models of low complexity can be investigated The equations are much more vague 	 74. Modeling refers to the process of generating a model asof some phenomenon. Mathematical representation Statistical representation
68. The simulator is normally cheaper to operate than	Mathematical resolutionAll of the above
 Trainer aircraft. real accident implementation Life representation Airplane flight 	 75 play a role in the development of the model. Simulation validation assumptions rationale
 therapeutic and diagnostic procedures. Medical simulators Architecture simulator City simulators Modern simulators 70. The most important step in creating a 	 76. Thestep in creating a model is defining a problem. Only step difficult most important
model isDefining a problem.Solving a problem.Forming a problem	 None of the above 77. The most important step in creating a model is definingproblem Statement.
 All of the above. 71. Medical simulators are being developed to teachprocedures. O therapeutic and diagnostic 	Clearmanufacturingvague78. All models have a

Information input	O Vague
Information processing	Difficult
Data output	Non of above
All of above	80. Mathematical and Statistical Models are:
79. The most important step in creating a	Obviously related
model is defining a problem	Completely different.
statement.	 No difference between them.
O Clear	O None of the above

Section 2 : Mark the following statements as True ${\bf R}$ or False ${\bf T}$ (25 marks)

_	cetion 2. Mark the following statements as true to or ruise 1 (20 marks	٠,
1-	A simulation is a group of models tied together with software and/or hardware that make the model useful for some purpose.	5
2-	Instrumented physical models are the most effective way of investigating fluid flows such as around hydraulic structures.	5
3-	A physical model of something that can move, like a vehicle or machine, may be completely static, or have parts that can be moved manually, or be powered.	5
4-	The purpose of a physical model on a larger scale may be to have a better overview, for testing purposes, as hobby or toy.	5
5-	A physical model of something large is usually smaller, and of something very small is larger.	5
6-	A physical model of an animal shows the animal's physical composition without it walking or flying away, and without danger, and if the real animal is not available.	5 5
7-	The purpose of a physical model on a smaller scale may be to see the structure of things that are normally too small to see properly or to see at all.	5
8-	The vast majority of 3D models today are built as textured polygonal models, because they are flexible and because computers can render them so quickly.	5
9-	Curve types include No uniform rational B-spline (NURBS), Splines, Patches and geometric primitives.	5
10-	A model is a 2D alternative for a 3D representation such as a drawing or photograph, or in the case of a globe, a 3D, undistorted alternative for a flat world map.	5 5
11-	There are currently 3 types of digital sculpting: Displacement, which is the most widely used among applications at this moment, volumetric and dynamic tessellation.	5
12-	Complex materials such as clouds, and liquid sprays are a mass of 3D coordinates which have either points, polygons, texture splats, or sprites assigned to them.	5
13-	Polygons are unplanar and can only approximate curved surfaces using many polygons.	5
14-	Some graphic art software includes filters that can be applied to 2D vector graphics or 2D raster graphics on transparent layers.	5 5
15-	Dynamic tessellation is similar to Voxel but divides the surface using triangulation to maintain a smooth surface and allow finer details.	5
16-	Curve modeling are influenced by weighted control points, decreasing the weight for a point will pull the curve closer to that point.	5
17-	The new mesh will usually have the original high resolution mesh information transferred into displacement data.	5
18-	The modeling technique consists of shaping individual objects that are later used in the scene.	5
19-	Displacement uses a dense model and stores new locations for the vertex positions through use of a 62bit image map that stores the adjusted locations.	5 5
20-	Disadvantages of 3D compare to 2D photorealistic rendering may include a software learning curve and difficulty achieving certain photorealistic effects.	5
21-	For the best, artists use a combination of 3D modeling followed by editing the 2D computer-rendered	5

	images from the 3D model.	
22-	Volumetric has similar capabilities as displacement and suffer from polygon stretching when there are not	5
	enough polygons in a region to achieve a deformation.	
23-	3D printing is a form of additive manufacturing technology where a three dimensional object is created by laying down successive layers of material.	5
24-	A theory has only the alternative of being right or wrong. A model has a third possibility; it may be right, but irrelevant.	5
25-	There are a number of modeling stages, including: constructive solid geometry, implicit surfaces, and subdivision surfaces.	5
26-	Computer modeling is the use of computers to model objects and to simulate processes.	5
27-	Computer models allow a person to study the response of a system to conditions that are not easily or safely applied in a real situation	5 5
28-	3D photorealistic effects are often achieved without wireframe modeling and are sometimes distinguishable in the final form.	5
29-	Computer simulations have become a useful partof mathematical modeling and represented as the running of the system's model.	5
30-	A computer model is usually defined in theoretical terms with a computer program.	5
31-	For many systems, graphical or mathematical representations are extremely complex because there are so many factors present.	5 5
32-	A computer model or a conceptual model is a computer program, that attempts to simulate an abstract model of a particular system.	5
33-	A mathematical model attempts to find analytical solutions to problems and enable the prediction of the behavior of the system.	5
34-	Computer simulations can be used to estimate the performance of systems too simple for analytical solutions.	5
35-	The goal of modeling is to come up with a representation that is easy to use in describing systems in a mathematically consistent manner.	5
36-	Computer models are valuable because they have fixed speed.	5
37-	Computer model can study the real situation.	5
38-	Since all models only partially represent the real world, they all have limited application for training and analysis.	5 5 5
39-	Computer model is usually defined in mathematical term .	5
40-	Economic simulations are used to simulate the behavior of flowing air, water and other fluids.	
41-	Hardware rendering, may require from few minutes up to a full day to render a single image.	5
42-	The most important step in creating a model is defining a vague problem statement.	5
43-	Software rendering draws up to 60 images per second.	5
44-	Hardware rendering is slower than Software rendering.	5
45-	Computer animation almost always uses hardware rendering.	5 5 5 5 5 5 5 5
46-	Graphics hardware commonly uses Gouraud shading.	5
		<u> </u>
47-	Computer simulations are used in a limited area of practical contexts such as flight simulators to train pilots.	
48-	In the first step of rendering the user provides the computer with detailed information about the source and angle of the lighting.	5
49-	The model comes only in one shape, size or style.	5 5
50-	The model is not the real world but merely a human construct to help us better understand real world systems.	5

51-	All models have an information input, an information processor, and an output of expected results.	5
52-	A simulation is a group of models tied together with software and/or hardware that make the model useful for some purpose.	5
53-	Animation is a group of models tied together with software and hardware that make the model useful for some purpose.	5
54-	The most important step in creating a model is defining a vague problem statement.	5
55-	Computer modeling is the use of computers to model objects and to simulate processes.	5
56-	Computer models are not valuable because they can be speed up or slowed down.	5
57-	A mathematical model attempts to find analytical solutions to problems and enable the prediction of the	5 5 5 5
	behavior of the system.	
58-	Models are typically used when it is possible to create experimental conditions in which scientists can	5
59-	directly measure outcomes. The term computer modeling is broader than computer simulation, which implies that all aspects are being	5
37-	modeled in the computer representation.	3
60-	The success of computer models is highly dependent on the mathematical representations of systems and	5
	on chosen output parameters.	
61-	Computer simulations are used in a limited area of practical contexts such as flight simulators to train pilots.	5
62-	The goal of modeling is to come up with a representation that is easy to use in describing systems in a mathematically consistent manner	5
63-	In the medical field, models are used to study economic growth, energy and food resources, on a world scale and on a local level.	5
64-	In engineering, computer models are used to develop new drugs and to predict their effects on the body.	5
65-	The model comes in different shape, size or style.	5
66-	Gouraud shading provides a better approximation of the surface but requires more calculation.	5
67-	The most common method of mapping is bump mapping.	5
68-	The model is not the real world but merely a human construct to help us better understand real world	5 5 5 5 5
	systems.	
69-	All models have a Data input, Data processor, and an output of expected results.	5 5
70-	Economic simulations are used to simulate the behavior of flowing air, water and other fluids.	5
71-	A mathematical model attempts to find analytical solutions to problems and enable the prediction of the behavior of the system.	5
72-	Success of computer models depends on the proper graphical representations and input parameters.	5
73-	The rendering pipeline provides more accurate shadows than other methods.	5
74-	The most important step in creating a model is defining a vague problem statement.	5
75-	A model is a representation of structure in a system and/or its properties.	5
76-	The model is the real world and it is a human construct to help us better understand VAGUE world systems.	5 5 5 5
77-	The most important step in creating a model is defining a clear problem statement.	5
78-	Ray tracing takes a short time to render a scene.	5
79-	We create models so we can understand the behavior of some part of the world around us.	5
80-	Mathematical models include Analytical models and Numerical Models.	5
81-	Conceptual Models are quantitative models that help highlight important connections in real world systems and processes.	5 5 5 5
82-	Graphical Models are qualitative models that help highlight major associations in real situations or	5

	processes.	
83-	Interactive demonstrations are physical models of systems that can be difficulty observed and	5
	manipulated.	
84-	Visualization models include Analytical models and Numerical Models. mathematical	5
85-	Statistical models are useful in helping identify patterns and underlying relationships between data sets	5
86-	The numerical and analytical models cannot be compared and contrasted.	5
87-	The analytical models are superior to numerical models in which the equations are much more intuitive.	5
88-	Visualizations for multidimensional data sets allow the users to Create 2-D and contour plots.	5
89-	The cycle of visualization\affirmation comes after extracting the goal of understanding.	5 5 5 5 5 5 5 5
90-	Numerical models are mathematical models that have a closed form solution.	5
91-	The intensity of red light is 4 times larger than that of blue light.	5
92-	Conceptual Models are mental models while the interactive demonstrations are physical models.	5
93-	Numerical solutions are relatively easy to get into mathematics in comparison with complicated analytical	5
	solutions.	
94-	In interactive design redesign and refine are coming after test and evaluation.	5
95-	One advantage of numerical solutions is that they are often very mathematically challenging to obtain.	5 5
96-	Analytical solution provides a concise preview of a model's behavior that is not as readily available with a numerical solution.	5
97-	Business models study employment, population, and housing needs on a world scale and on a local level.	5
98-	Analytical models are superior to numerical models as they were more aesthetically pleasing.	5 5 5
99-	Interactive Demonstrations require planning and setup in order to live up to their potential to improve student learning.	5
100-	Economic models study how changes in levels of sales and prices affect a company's profits.	5

Section (3): Choose and put the letter corresponding to the correct answer: (4 marks)

A. Modeling B. Transformation C. Ray tracing

D. Lighting and Shading E. Texture mapping F. Z buffering

G. Bump mapping H. Displacement mapping

§	Study how changes in levels of sales and prices affect a company's profits	5
§	The surface of an object is represented either as a series of curved surfaces or as polygons.	5
§	Point at which the computer program generally breaks up complex geometric objects into simple primitives.	5
§	Shading information is calculated for each vertex based on the location and color of the light in the computer background.	5
§	Maps apply an image to an object's surface like a wallpaper.	5
§	Provides a more realistic view by creating highlights to make the surface appear more complex.	5
§	Physically offsetting the actual surface according to a displacement map.	5
§	A technique used to determine which primitive is closest to the viewing location and angle of the scene.	5
§	A technique calculates the path that light rays take through the scene, starting with the viewing angle and location and calculating back to the light source.	5

_	_
- 1 -	_
	•
•	

§ A technique provides more accurate shadows than other methods and handles multiple reflections correctly

Section (4): - Li	st types of computer models? (2 marks)
1	
2	
3	
4	
F	
	umerate all 3D model creation stages? (3 marks)
	amerate an 32 moder creation stages. (5 marks)
2	
2	
F	
,	
	m your background experience, write an essay of not more
than 1	5 lines on The applications of models and simulations in
your a	rea of interest: (6 marks)
My best wishes	
, 2000 11101100	
Prof/Ahmed Waheed	